Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Immune Netw ; 23(2): e13, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2317932

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is one of the most consequential global health crises in over a century. Since its discovery in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to mutate into different variants and sublineages, rendering previously potent treatments and vaccines ineffective. With significant strides in clinical and pharmaceutical research, different therapeutic strategies continue to be developed. The currently available treatments can be broadly classified based on their potential targets and molecular mechanisms. Antiviral agents function by disrupting different stages of SARS-CoV-2 infection, while immune-based treatments mainly act on the human inflammatory response responsible for disease severity. In this review, we discuss some of the current treatments for COVID-19, their mode of actions, and their efficacy against variants of concern. This review highlights the need to constantly evaluate COVID-19 treatment strategies to protect high risk populations and fill in the gaps left by vaccination.

2.
J Biomed Sci ; 29(1): 49, 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1923546

ABSTRACT

BACKGROUND: With the continuous emergence of new SARS-CoV-2 variants that feature increased transmission and immune escape, there is an urgent demand for a better vaccine design that will provide broader neutralizing efficacy. METHODS: We report an mRNA-based vaccine using an engineered "hybrid" receptor binding domain (RBD) that contains all 16 point-mutations shown in the currently prevailing Omicron and Delta variants. RESULTS: A booster dose of hybrid vaccine in mice previously immunized with wild-type RBD vaccine induced high titers of broadly neutralizing antibodies against all tested SARS-CoV-2 variants of concern (VOCs). In naïve mice, hybrid vaccine generated strong Omicron-specific neutralizing antibodies as well as low but significant titers against other VOCs. Hybrid vaccine also elicited CD8+/IFN-γ+ T cell responses against a conserved T cell epitope present in wild type and all VOCs. CONCLUSIONS: These results demonstrate that inclusion of different antigenic mutations from various SARS-CoV-2 variants is a feasible approach to develop cross-protective vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
3.
International Journal of Human–Computer Interaction ; : 1-12, 2022.
Article in English | Taylor & Francis | ID: covidwho-1791095
4.
Daru ; 30(1): 211-228, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1653835

ABSTRACT

PURPOSE: Tocilizumab has shown equivocal outcomes in reducing mortality in COVID-19. The corticosteroids appear to be an affordable alternative to tocilizumab. This study aims to estimate the efficacy of tocilizumab and the corticosteroids particularly dexamethasone and methylprednisolone and to identify possible determinants of their efficacy. METHODS: Five electronic databases were searched for studies involving tocilizumab, dexamethasone, and methylprednisolone in treating COVID-19. We included case-control and randomized or partially randomized trials. Meta-regression for patient baseline characteristics, co-medications, and tocilizumab dose regimens was performed to identify contributing factors to drug efficacy. RESULTS: Thirteen randomized controlled trials (RCTs) and twenty-four case-control studies were included in our meta-analysis involving 18,702 patients. Meta-analysis among the RCTs showed that a summary estimate favoring mortality reduction (OR 0.71, 95%CI 0.55 - 0.92) contributed mainly by tocilizumab and dexamethasone. Among case-control studies, meta-analysis showed mortality reduction (OR 0.52, 95%CI 0.36 - 0.75) contributed by tocilizumab and tocilizumab-methylprednisolone combination. Methylprednisolone alone did not reduce mortality except for one study involving high dose pulse therapy. Meta-analysis also found that all three drugs did not significantly reduce mechanical ventilation (OR 0.72, 95%CI 0.32 - 1.60). CONCLUSION: Tocilizumab and dexamethasone emerge as viable options in reducing mortality in severe COVID-19 patients. A tocilizumab-corticosteroid combination strategy may improve therapeutic outcome in cases where single therapy fails.


Subject(s)
COVID-19 Drug Treatment , Adrenal Cortex Hormones/therapeutic use , Antibodies, Monoclonal, Humanized , Dexamethasone/therapeutic use , Humans , Methylprednisolone/therapeutic use , SARS-CoV-2
5.
Clin Infect Dis ; 73(9): e2901-e2907, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500984

ABSTRACT

BACKGROUND: With the limited availability of testing for the presence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and concerns surrounding the accuracy of existing methods, other means of identifying patients are urgently needed. Previous studies showing a correlation between certain laboratory tests and diagnosis suggest an alternative method based on an ensemble of tests. METHODS: We have trained a machine learning model to analyze the correlation between SARS-CoV-2 test results and 20 routine laboratory tests collected within a 2-day period around the SARS-CoV-2 test date. We used the model to compare SARS-CoV-2 positive and negative patients. RESULTS: In a cohort of 75 991 veteran inpatients and outpatients who tested for SARS-CoV-2 in the months of March through July 2020, 7335 of whom were positive by reverse transcription polymerase chain reaction (RT-PCR) or antigen testing, and who had at least 15 of 20 lab results within the window period, our model predicted the results of the SARS-CoV-2 test with a specificity of 86.8%, a sensitivity of 82.4%, and an overall accuracy of 86.4% (with a 95% confidence interval of [86.0%, 86.9%]). CONCLUSIONS: Although molecular-based and antibody tests remain the reference standard method for confirming a SARS-CoV-2 diagnosis, their clinical sensitivity is not well known. The model described herein may provide a complementary method of determining SARS-CoV-2 infection status, based on a fully independent set of indicators, that can help confirm results from other tests as well as identify positive cases missed by molecular testing.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Clinical Laboratory Techniques , Humans , Sensitivity and Specificity
6.
Nat Commun ; 12(1): 4876, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-1356557

ABSTRACT

While the printed circuit board (PCB) has been widely considered as the building block of integrated electronics, the world is switching to pursue new ways of merging integrated electronic circuits with textiles to create flexible and wearable devices. Herein, as an alternative for PCB, we described a non-printed integrated-circuit textile (NIT) for biomedical and theranostic application via a weaving method. All the devices are built as fibers or interlaced nodes and woven into a deformable textile integrated circuit. Built on an electrochemical gating principle, the fiber-woven-type transistors exhibit superior bending or stretching robustness, and were woven as a textile logical computing module to distinguish different emergencies. A fiber-type sweat sensor was woven with strain and light sensors fibers for simultaneously monitoring body health and the environment. With a photo-rechargeable energy textile based on a detailed power consumption analysis, the woven circuit textile is completely self-powered and capable of both wireless biomedical monitoring and early warning. The NIT could be used as a 24/7 private AI "nurse" for routine healthcare, diabetes monitoring, or emergencies such as hypoglycemia, metabolic alkalosis, and even COVID-19 patient care, a potential future on-body AI hardware and possibly a forerunner to fabric-like computers.


Subject(s)
Biosensing Techniques/instrumentation , Precision Medicine/instrumentation , Textiles , Wearable Electronic Devices , Wireless Technology/instrumentation , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/virology , Equipment Design , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Precision Medicine/methods , SARS-CoV-2/physiology , Sweat/physiology
7.
Materials (Basel) ; 13(18)2020 Sep 11.
Article in English | MEDLINE | ID: covidwho-833479

ABSTRACT

Product miniaturization is a trend for facilitating product usage, enabling product functions to be implemented in microscale geometries, and aimed at reducing product weight, volume, cost and pollution. Driven by ongoing miniaturization in diverse areas including medical devices, precision equipment, communication devices, micro-electromechanical systems (MEMS) and microsystems technology (MST), the demands for micro metallic products have increased tremendously. Such a trend requires development of advanced micromanufacturing technology of metallic materials for producing high-quality micro metallic products that possess excellent dimensional tolerances, required mechanical properties and improved surface quality. Micromanufacturing differs from conventional manufacturing technology in terms of materials, processes, tools, and machines and equipment, due to the miniaturization nature of the whole micromanufacturing system, which challenges the rapid development of micromanufacturing technology. Against such a background, the Special Issue "Micromanufacturing of Metallic Materials" was proposed to present the recent developments of micromanufacturing technologies of metallic materials. The papers collected in the Special Issue include research articles, literature review and technical notes, which have been highlighted in this editorial.micromanufacturing; metallic materials; miniaturization; micro products.

SELECTION OF CITATIONS
SEARCH DETAIL